\(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1337]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 277 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \left (A b^2-a^2 (A+3 C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b+3 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

-2/3*(A*b^2-a^2*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*
(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*b*C*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))
/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*A*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/
2)/d+2/3*(A*b+3*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(
a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {4350, 4179, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \left (A b^2-a^2 (A+3 C)\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 (3 a B+A b) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}{3 d}+\frac {2 b C \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[Cos[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*(A*b^2 - a^2*(A + 3*C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a*d*S
qrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*b*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x
)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*(A*b + 3*a*B)*Sqrt[Cos[c + d*x]]*Ell
ipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (2*A
*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4179

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (A b+3 a B)+\frac {1}{2} (3 b B+a (A+3 C)) \sec (c+d x)+\frac {3}{2} b C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (A b+3 a B)+\frac {1}{2} (3 b B+a (A+3 C)) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx+\left (b C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {\left ((A b+3 a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a}-\frac {1}{3} \left (\left (\frac {A b^2}{a}-a (A+3 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (b C \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {\left (\left (\frac {A b^2}{a}-a (A+3 C)\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b C \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left ((A b+3 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a \sqrt {b+a \cos (c+d x)}} \\ & = \frac {2 b C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {\left (\left (\frac {A b^2}{a}-a (A+3 C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left ((A b+3 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 \left (\frac {A b^2}{a}-a (A+3 C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b+3 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 38.47 (sec) , antiderivative size = 106809, normalized size of antiderivative = 385.59 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Result too large to show} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

Result too large to show

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.09 (sec) , antiderivative size = 3005, normalized size of antiderivative = 10.85

method result size
default \(\text {Expression too large to display}\) \(3005\)

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*C*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a
-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(
a-b))^(1/2))*a-EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b+2*EllipticPi(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b)*(-(a*(1-cos(d*x+c))^2*csc(d*x+
c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*c
sc(d*x+c)^2+1))^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^
2*b*csc(d*x+c)^2-a-b)/((a-b)/(a+b))^(1/2)+2*B*(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)
^2+1))^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+
c)^2-1))^(1/2)*((1-cos(d*x+c))^3*a*((a-b)/(a+b))^(1/2)*csc(d*x+c)^3-((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*b*csc
(d*x+c)^3+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*(-(a*(1-cos(d*x+c))^2
*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)-Ellipt
icF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1
-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)-(-(a*(1-cos(d*x+c))^2*
csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*Ellipti
cE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-
cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))
^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b-((a-b)/(a+b))^(1/2)*a*(-cot(d*x+c)+csc(d*x+c))-((a-b)/
(a+b))^(1/2)*b*(-cot(d*x+c)+csc(d*x+c)))/((a-b)/(a+b))^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2
*b*csc(d*x+c)^2-a-b)-2/3*A*(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(3/2)*((a*(1
-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(((a
-b)/(a+b))^(1/2)*a*b*(1-cos(d*x+c))^5*csc(d*x+c)^5-((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^5*csc(d*x+c)^5-(-(a*
(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2
+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*(1-cos(d*x+c))^2*cs
c(d*x+c)^2+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c)
)^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*(1-
cos(d*x+c))^2*csc(d*x+c)^2-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2
)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b)
)^(1/2))*a*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-
a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*a^2*csc(d*x+
c)^3-2*((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*a*b*csc(d*x+c)^3-2*((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*b^2*csc(d*
x+c)^3-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*
csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2+(-(a*(1
-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1
)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b-(-(a*(1-cos(d*x+c))^2
*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*Ellipt
icE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b+EllipticE(((a-b)/(a+b))^(1/2)*(-cot
(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)
^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)-2*((a-b)/(a+b))^(1/2)*a^2*(-cot(d*x+c)+csc(d*x+c)
)-3*((a-b)/(a+b))^(1/2)*a*b*(-cot(d*x+c)+csc(d*x+c))-((a-b)/(a+b))^(1/2)*b^2*(-cot(d*x+c)+csc(d*x+c)))/((1-cos
(d*x+c))^2*csc(d*x+c)^2-1)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((a-b)/(a+b))
^(1/2)/a)

Fricas [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)